\(dst(x,y)=\alpha src_0(x,y) + (1-\alpha)src_1(x,y) \qquad (\alpha \in [0.0,1.0])\)
\(dst(x,y)=\alpha src(x,y) + \beta \qquad (\alpha>0)\)
\(dst(x,y)= \sum_{k}\sum_{l} src(x+k,y+l) kernel(k,l) \qquad (中心点的k和l为0)\)
$$ dilate(x,y) = \max_{}src(x+k,y+l)
erode(x,y) = \min_{}src(x+k,y+l)
open(x,y) = dilate(erode(x,y))
clos(x,y) = erode(dilate(x,y))
morph-grad(x,y) = dilate(x,y) - erode(x,y)
tophat= src(x,y)-open(x,y)
blackhat = close(x,y) - src(x,y)
$$
THRESH_BINARY \(dst(x,y) = \begin{cases} maxval & if \ src(x,y)> thresh\\ 0 & otherwise \end{cases}\)
THRESH_BINARY_INV \(dst(x,y) = \begin{cases} 0 & if \ src(x,y)> thresh\\ maxval & otherwise \end{cases}\)
THRESH_TRUNC \(dst(x,y) = \begin{cases} thresh & if \ src(x,y)> thresh\\ 0 & otherwise \end{cases}\)
THRESH_TOZERO \(dst(x,y) = \begin{cases} src(x,y) & if \ src(x,y)> thresh\\ 0 & otherwise \end{cases}\)
THRESH_TOZERO_INV \(dst(x,y) = \begin{cases} 0 & if \ src(x,y)> thresh\\ src(x,y) & otherwise \end{cases}\)
欧式距离(L2)
曼哈顿距离(L1)
\[L_1 = \sum_{i=1}^{n}|x_i-y_i|\]切比雪夫距离 \(dist=\max_{i=1}^{n}(|x_i-y_i|)\)
海明距离 \(两列数据对应位置值不同的次数总和\)
闵可夫斯基距离
\[dist = \sqrt[p]{\sum_{i=1}^{n}(x_i-y_i)^p}\]巴氏距离 \(D_B(p,q) = -ln(\sum_{x \ in X} \sqrt{p(x)q(x)})\)
均值
方差:偏离均值的程度 \(S^2 = \frac {\sum_{i=1}^n (X_i-\overline{X})^2} {n或者(n-1)}\) 标准差(均方差):所有样本到均值的距离之平均
\[S= \sqrt \frac {\sum_{i=1}^n (X_i-\overline{X})^2} {n或者(n-1)}\]协方差:两组数据是否存在联系。 协方差矩阵
\[Cov(X,Y) = \frac {\sum_{i=1}^n (X_i-\overline{X}) (Y_i-\overline{Y}) } {n或者(n-1)}\]相关系数: \(\rho(X,Y) = \frac {\sum_{i=1}^n (X_i-\overline{X}) (Y_i-\overline{Y}) } {S(X) S(Y)}\)
\(dst(x,y)= src(x,y) / N * N \qquad (从256空间缩小到64空间:N=256/64=4)\)